Lịch sử hệ thống Octal, Hệ thống đánh số và chuyển đổi
các hệ thống bát phân nó là một hệ thống số vị trí của cơ sở tám (8); nghĩa là, nó bao gồm tám chữ số, đó là: 0, 1, 2, 3, 4, 5, 6 và 7. Do đó, mỗi chữ số của một số bát phân có thể có bất kỳ giá trị nào từ 0 đến 7. Các số bát phân chúng được hình thành từ các số nhị phân.
Điều này là như vậy bởi vì cơ sở của nó là một sức mạnh chính xác của hai (2). Đó là, các số thuộc hệ bát phân được hình thành khi chúng được nhóm thành ba chữ số liên tiếp, được sắp xếp từ phải sang trái, thu được theo cách này giá trị thập phân của chúng.
Chỉ số
- 1 Lịch sử
- Hệ thống đánh số 2 tháng
- 3 Chuyển đổi hệ bát phân thành số thập phân
- 3.1 Ví dụ 1
- 3.2 Ví dụ 2
- 4 Chuyển đổi hệ thập phân sang bát phân
- 4.1 Ví dụ
- 5 Chuyển đổi hệ bát phân thành nhị phân
- 6 Chuyển đổi hệ nhị phân sang bát phân
- 7 Chuyển đổi hệ bát phân thành thập lục phân và ngược lại
- 7.1 Ví dụ
- 8 tài liệu tham khảo
Lịch sử
Hệ thống bát phân có nguồn gốc từ thời cổ đại, khi con người dùng tay để đếm tám đến tám con vật.
Chẳng hạn, để đếm số lượng bò trong chuồng, người ta bắt đầu đếm trên bàn tay phải, nối ngón cái với ngón út; sau đó để đếm con vật thứ hai, ngón cái được nối với ngón trỏ và cứ thế, với các ngón còn lại của mỗi bàn tay, cho đến khi hoàn thành 8.
Có khả năng trong thời cổ đại, hệ thống đánh số bát phân được sử dụng trước số thập phân để có thể đếm các khoảng trắng giữa các chữ số; có nghĩa là, đếm tất cả các ngón tay ngoại trừ ngón tay cái.
Sau đó, hệ thống đánh số bát phân được thiết lập, bắt nguồn từ hệ thống nhị phân, bởi vì nó cần nhiều chữ số để chỉ đại diện cho một số; Từ đó trở đi, các hệ thống bát giác và lục giác đã được tạo ra, không yêu cầu quá nhiều chữ số và có thể dễ dàng chuyển đổi sang hệ thống nhị phân.
Hệ thống đánh số bát phân
Hệ thống bát phân bao gồm tám chữ số nằm trong khoảng từ 0 đến 7. Chúng có cùng giá trị như trong trường hợp của hệ thập phân, nhưng giá trị tương đối của chúng thay đổi tùy thuộc vào vị trí chúng chiếm giữ. Giá trị của mỗi vị trí được đưa ra bởi các quyền hạn cơ sở 8.
Vị trí của các chữ số trong một số bát phân có các trọng số sau:
84, 83, 82, 81, 80, điểm bát phân, 8-1, 8-2, 8-3, 8-4, 8-5.
Chữ số bát phân lớn nhất là 7; theo cách này, khi hệ thống này được tính, vị trí một chữ số được tăng từ 0 lên 7. Khi đạt đến 7, nó được tái chế thành 0 cho lần đếm tiếp theo; theo cách đó, vị trí tiếp theo của chữ số được tăng lên. Ví dụ, để đếm các chuỗi, trong hệ thống bát phân sẽ là:
- 0, 1, 2, 3, 4, 5, 6, 7, 10.
- 53, 54, 55, 56, 57, 60.
- 375, 376, 377, 400.
Có một định lý cơ bản được áp dụng cho hệ thống bát phân, và được thể hiện như sau:
Trong biểu thức này di đại diện cho chữ số nhân với công suất cơ bản 8, biểu thị giá trị vị trí của mỗi chữ số, giống như cách nó được sắp xếp trong hệ thập phân.
Ví dụ: bạn có số 543.2. Để đưa nó vào hệ thống bát phân, nó bị phân hủy theo cách sau:
N = Σ [(5 * 82) + (4 * 81) + (3 *80) + (2 *8-1)] = (5 * 64) + (4 * 8) + (2 * 1) + (2 * 0.125)
N = 320 +32 + 2 + 0,25 = 354 + 0,25d
Theo cách đó, bạn phải 543.2q = 354,25d. Chỉ số q chỉ ra rằng đó là một số bát phân cũng có thể được biểu thị bằng số 8; và chỉ số d đề cập đến số thập phân, cũng có thể được biểu thị bằng số 10.
Chuyển đổi hệ bát phân thành thập phân
Để chuyển đổi số hệ thống bát phân thành số tương đương trong hệ thập phân, bạn chỉ phải nhân mỗi chữ số bát phân với giá trị vị trí của nó, bắt đầu từ bên phải.
Ví dụ 1
7328 = (7* 82) + (3* 81) + (2* 80) = (7 * 64) + (3 * 8) + (2 * 1)
7328= 448 +24 +2
7328= 47410
Ví dụ 2
26,98 = (2 *81) + (6* 80) + (9)* 8-1) = (2 * 8) + (6 * 1) + (9 * 0,125)
26,98 = 16 + 6 + 1.125
26,98= 23.12510
Chuyển đổi hệ thập phân sang bát phân
Số nguyên thập phân có thể được chuyển đổi thành số bát phân bằng phương pháp chia lặp lại, trong đó số nguyên thập phân được chia cho 8 cho đến khi thương số bằng 0 và phần dư của mỗi phép chia sẽ đại diện cho số bát phân.
Các chất thải được sắp xếp từ cuối đến đầu tiên; nghĩa là, phần dư đầu tiên sẽ là chữ số có nghĩa ít nhất của số bát phân. Theo cách đó, chữ số có ý nghĩa nhất sẽ là dư lượng cuối cùng.
Ví dụ
Số thập phân của số thập phân 26610
- Chia số thập phân 266 giữa 8 = 266/8 = 33 + dư 2.
- Khi đó 33 được chia cho 8 = 33/8 = 4 + dư lượng của 1.
- Chia 4 cho 8 = 4/8 = 0 + dư của 4.
Như với phép chia cuối cùng, thương số nhỏ hơn 1, có nghĩa là kết quả đã được tìm thấy; chỉ các phần còn lại phải được sắp xếp theo thứ tự ngược lại, sao cho số bát phân của số thập phân 266 là 412, như có thể thấy trong hình ảnh sau:
Chuyển đổi hệ thống bát phân thành nhị phân
Việc chuyển đổi hệ bát phân thành nhị phân được thực hiện bằng cách chuyển đổi chữ số bát phân thành chữ số nhị phân tương đương của nó, được hình thành bởi ba chữ số. Có một bảng cho thấy tám chữ số có thể được chuyển đổi:
Từ các chuyển đổi này, ví dụ, bất kỳ số nào từ hệ thống bát phân sang nhị phân đều có thể được thay đổi để chuyển đổi số 5728 tương đương của bạn được tìm kiếm trong bảng. Vì vậy, bạn phải:
58 = 101
78= 111
28 = 10
Do đó, 5728 tương đương trong hệ thống nhị phân với 10111110.
Chuyển đổi hệ thống nhị phân sang bát phân
Quá trình chuyển đổi số nguyên nhị phân thành số nguyên bát phân là thao tác nghịch đảo với quy trình trước đó.
Nghĩa là, các bit của số nhị phân được nhóm thành hai nhóm ba bit, bắt đầu từ phải sang trái. Sau đó, chuyển đổi nhị phân sang bát phân được thực hiện với bảng trước đó.
Trong một số trường hợp, số nhị phân sẽ không có nhóm 3 bit; để hoàn thành nó, thêm một hoặc hai số không ở bên trái của nhóm đầu tiên.
Ví dụ: để thay đổi số nhị phân 11010110 thành bát phân, việc sau được thực hiện:
- Nhóm 3 bit được hình thành bắt đầu từ bên phải (bit cuối cùng):
11010110
- Vì nhóm đầu tiên không đầy đủ, nên một số 0 được thêm vào bên trái:
011010110
- Việc chuyển đổi được thực hiện từ bảng:
011 = 3
010 = 2
110 = 6
Do đó, số nhị phân 011010110 tương đương với 3268.
Chuyển đổi hệ bát phân thành thập lục phân và ngược lại
Để thực hiện thay đổi từ số bát phân sang hệ thập lục phân hoặc từ hệ thập lục phân sang bát phân, trước tiên cần phải chuyển đổi số thành nhị phân, sau đó sang hệ thống mong muốn.
Đối với điều này, có một bảng trong đó mỗi chữ số thập lục phân được biểu diễn bằng tương đương trong hệ nhị phân, bao gồm bốn chữ số.
Trong một số trường hợp, số nhị phân sẽ không có nhóm 4 bit; để hoàn thành nó, thêm một hoặc hai số không ở bên trái của nhóm đầu tiên
Ví dụ
Chuyển đổi số bát phân 1646 thành số thập lục phân:
- Số từ bát phân sang nhị phân được chuyển đổi
18 = 1
68 = 110
48 = 100
68 = 110
- Vì vậy, 16468 = 1110100110.
- Để chuyển đổi từ nhị phân sang thập lục phân, trước tiên chúng được sắp xếp theo nhóm 4 bit, bắt đầu từ phải sang trái:
11 1010 0110
- Nhóm đầu tiên được hoàn thành với số không, để nó có thể có 4 bit:
0011 1010 0110
- Việc chuyển đổi hệ thống nhị phân thành thập lục phân được thực hiện. Các tương đương được thay thế bằng phương tiện của bảng:
0011 = 3
1010 = A
0110 = 6
Do đó, số bát phân 1646 tương đương với 3A6 trong hệ thập lục phân.
Tài liệu tham khảo
- Bressan, A. E. (1995). Giới thiệu về hệ thống đánh số. Đại học kinh doanh Argentina.
- Harris, J. N. (1957). Giới thiệu về Hệ thống đánh số nhị phân và nhị phân: Lexington, Mass. Cơ quan thông tin kỹ thuật.
- Kumar, A. A. (2016). Nguyên tắc cơ bản của mạch kỹ thuật số. Học tập.
- Peris, X. C. (2009). Hệ điều hành Monopuesto.
- Ronald J. Tocci, N. S. (2003). Hệ thống kỹ thuật số: nguyên tắc và ứng dụng. Giáo dục Pearson.